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Number systems

 Representation of positive numbers is the same in most systems 
 Major differences are in how negative numbers are represented 
 Representation of negative numbers come in three major schemes

 sign and magnitude
 1s complement
 2s complement

 Assumptions
 we'll assume a 4 bit machine word 
 16 different values can be represented 
 roughly half are positive, half are negative
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Sign and magnitude

 One bit dedicate to sign (positive or negative)
 sign: 0 = positive (or zero), 1 = negative

 Rest represent the absolute value or magnitude
 three low order bits: 0 (000) thru 7 (111)

 Range for n bits
 +/– (2n–1 –1)  (two representations for 0)

 Cumbersome addition/subtraction 
 must compare magnitudes

to determine sign of result
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2 =  10000

1 =  00001

2   –1 =    1111

7 =    0111

1000   =  –7 in 1s complement form

4

4

1s complement

 If N is a positive number, then the negative of N (its 1s complement 
or N' ) is N' = (2n– 1) – N
 example: 1s complement of 7

 shortcut: simply compute bit-wise complement ( 0111 -> 1000 )
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1s complement (cont'd)

 Subtraction implemented by 1s complement and then addition
 Two representations of 0

 causes some complexities in addition
 High-order bit can act as sign bit
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2s complement

 1s complement with negative numbers shifted one position 
clockwise
 only one representation for 0 
 one more negative number

than positive numbers
 high-order bit can act as sign bit
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2 = 10000

7 = 0111

1001  = repr. of –7

4

2 = 10000

–7 = 1001

0111  = repr. of 7

4

subtract

subtract

2s complement (cont’d)

 If N is a positive number, then the negative of N (its 2s complement 
or N* ) is N* = 2n – N
 example: 2s complement of 7

 example: 2s complement of –7

 shortcut: 2s complement = bit-wise complement + 1
 0111 -> 1000 + 1 -> 1001  (representation of -7)
 1001 -> 0110 + 1 -> 0111  (representation of 7)
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2s complement addition and subtraction

 Simple addition and subtraction
 simple scheme makes 2s complement the virtually unanimous choice for 

integer number systems in computers
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Why can the carry-out be ignored?

 Can't ignore it completely
 needed to check for overflow (see next two slides)

 When there is no overflow, carry-out may be true but can be ignored

– M + N when N > M:

M*  +  N  =  (2n – M)  +  N  =  2n +  (N – M)

ignoring carry-out is just like subtracting 2n

– M + – N where N + M ≤ 2n–1

(– M) + (– N) = M* +  N* = (2n– M) + (2n– N)   = 2n – (M + N)  +  2n

ignoring the carry, it is just the 2s complement representation for – (M + N)
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Overflow in 2s complement 
addition/subtraction

 Overflow conditions
 add two positive numbers to get a negative number
 add two negative numbers to get a positive number
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Overflow conditions

 Overflow when carry into sign bit position is not equal to carry-out
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A B CI

SCO

CO = A B+B CI+CI A

Truth Table:

A  B CI  |  S  CO
----------|--------
0  0  0  |  0  0
0  0  1  |  1  0
0  1  0  |  1  0
0  1  1  |  0  1
1  0  0  |  1  0
1  0  1  |  0  1
1  1  0  |  0  1
1  1  1  |  1  1

S = A  B  CI++

Addition: binary addition

 This is the primitive of almost all arithmetic computation.

발표자
프레젠테이션 노트
KW:  one-bit full adder 

Every ASIC technology library should have this cell.
The more drive strength this cell has, the better timing QOR, BOA, and compile would offer you (after compiling down to gates). BOA tries to map to Full Adder Cells if they exist in a technology library.  Many technology libraries contain these cells.  However, we have seen that many full adder cells are optimized for area savings QoR.  If your design is time-critical, use compile -map_effort high to get compile to decompose a full adder cell into discrete gates (should improve timing at the expense of area).
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A B CI

CO S

A B CI

CO S

A B CI

CO S

A B CI

CO S

A[3] B[3] A[2] B[2] A[1] B[1] A[0] B[0] Cin

SUM[3] SUM[2] SUM[1] SUM[0]Cout

Area = (bit-width) * (area of a one-bit full-adder cell)
Delay = (bit-width) * (delay of a one-bit full-adder cell)

A( ) B( )

S( )

CiCo

A 4-Bit Ripple-Carry Adder (RCA)
 Note:   The carry chain ripples from the least to the most 

significant bit (LSB to MSB). 

발표자
프레젠테이션 노트
KW:  ripple adder :  architecture

When cascading ripple adders, the incremental delay per adder is only that of a one-bit full-adder cell.
The good thing about a ripple adder is that it is the smallest adder architecture with the area equal to the area of a full-adder cell times the bit width.
The drawback of a ripple adder is that it is slow, with the delay equal to the delay of a full-adder cell times the bit width.
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A B

Cout

Sum

Cin

0 1

Add'
Subtract

A0 B0B0'

Sel

Overflow

A B

Cout

Sum

Cin

A1 B1B1'

Sel

A B

Cout

Sum

Cin

A2 B2B2'

Sel 0 1 0 10 1

A B

Cout

Sum

Cin

A3 B3B3'

Sel

S3 S2 S1 S0

Adder/subtractor

 Use an adder to do subtraction thanks to 2s complement representation
 A – B  =   A + (– B)   =   A + B' + 1
 control signal selects B or 2s complement of B
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Carry-lookahead logic

 Carry generate:  Gi = Ai Bi
 must generate carry when A = B = 1

 Carry propagate:  Pi = Ai xor Bi
 carry-in will equal carry-out here

 Sum and Cout can be re-expressed in terms of generate/propagate:
 Si = Ai xor Bi xor Ci

= Pi xor Ci
 Ci+1 = Ai Bi + Ai Ci + Bi Ci

= Ai Bi + Ci (Ai + Bi)
= Ai Bi + Ci (Ai xor Bi)
= Gi + Ci Pi
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Carry-lookahead logic (cont’d)

 Re-express the carry logic as follows:
 C1 = G0 + P0 C0
 C2 = G1 + P1 C1 = G1 + P1 G0 + P1 P0 C0
 C3 = G2 + P2 C2 = G2 + P2 G1 + P2 P1 G0 + P2 P1 P0 C0
 C4 = G3 + P3 C3 = G3 + P3 G2 + P3 P2 G1 + P3 P2 P1 G0

+ P3 P2 P1 P0 C0

 Each of the carry equations can be implemented with two-level logic
 all inputs are now directly derived from data inputs and not from 

intermediate carries
 this allows computation of all sum outputs to proceed in parallel
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G3
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P0

P0
G0

G0

G0

G0
C1 @ 3

P1

P1

P1

P1

P1

P1

G1

G1

G1

C2  @ 3

P2

P2

P2

P2

P2

P2

G2

G2

C3 @ 3

P3

P3

P3

P3

C4 @ 3

Pi @ 1 gate delay

Ci Si @ 2 gate delays

Bi
Ai

Gi @ 1 gate delay

increasingly complex
logic for carries

Carry-lookahead implementation

 Adder with propagate and generate outputs
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A+B

A B CI A B CI A B CIA B CI

CO S CO S CO SCO S

A[3] B[3] A[2] B[2] A[1] B[1] A[0] B[0] Cin

SUM[3] SUM[2] SUM[1] SUM[0]Cout

CLA Logic
A2 B2 A1 B1 A0 B0A3 B3

A[3] B[3] A[2] B[2] A[1] B[1] A[0] B[0]

C1C2C3C4

Area = (CLA Logic Area) + ((bit-width) * (area of a one-bit full-adder cell))
= about(1 + Log2(bit-width)) * (area of ripple adder)

Delay = about(1 + Log2(bit-width)) * (delay of a one-bit full-adder cell)

A( ) B( )

S( )

CiCo

4-Bit Carry Look Ahead (CLA) Adder

발표자
프레젠테이션 노트
KW:  carry look ahead adder

The good thing about this architecture is that it is much faster, with the delay equal to the delay of a single full-adder cell plus the delay of the carry-look-ahead logic.  The delay of the carry-look-ahead logic is proportional to the log of the bit width as opposed to being proportional to the bit width .  Thus, as the bit width increases, delay improvement over the ripple architecture becomes more pronounced.
The drawback of this architecture is it is much larger than a ripple architecture.  In fact, the area is on the order of the log2 of the bit width times larger than a ripple architecture.
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4-Bit Adder
[3:0]

C0C4

4-bit adder
[7:4]

1C8

0C8

five
2:1 mux

01010101

adder 
low

adder
high

01

4-bit adder
[7:4]

C8 S7 S6 S5 S4 S3 S2 S1 S0

Carry-select adder 

 Redundant hardware to make carry calculation go faster
 compute two high-order sums in parallel while waiting for carry-in
 one assuming carry-in is 0 and another assuming carry-in is 1
 select correct result once carry-in is finally computed
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logical and arithmetic operations
not all operations appear useful, but "fall out" of internal logic

S1
0
0
1
1

S0
0
1
0
1

Function
Fi = Ai

Fi = not Ai
Fi = Ai xor Bi

Fi = Ai xnor Bi

Comment
input Ai transferred to output
complement of Ai transferred to output
compute XOR of Ai, Bi
compute XNOR of Ai, Bi

M = 0, logical bitwise operations

M = 1, C0 = 0, arithmetic operations
0
0
1
1

0
1
0
1

F = A
F = not A

F = A plus B
F = (not A) plus B

input A passed to output
complement of A passed to output
sum of A and B
sum of B and complement of A

M = 1, C0 = 1, arithmetic operations
0
0
1
1

0
1
0
1

F = A plus 1
F = (not A) plus 1
F = A plus B plus 1

F = (not A) plus B plus 1

increment A
twos complement of A
increment sum of A and B
B minus A

Arithmetic logic unit (ALU) design specification
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BiS1 AiS0 CiM

FiCi+1

X1

X2

X3

A1 A2

A3 A4

O1

first-level gates
use S0 to complement Ai

S0 = 0 causes gate X1 to pass Ai
S0 = 1 causes gate X1 to pass Ai'

use S1 to block Bi
S1 = 0 causes gate A1 to make Bi go forward as 0

(don't want Bi for operations with just A)
S1 = 1 causes gate A1 to pass Bi

use M to block Ci
M = 0 causes gate A2 to make Ci go forward as 0

(don't want Ci for logical operations)
M = 1 causes gate A2 to pass Ci

other gates
for M=0 (logical operations, Ci is ignored)

Fi = S1 Bi xor (S0 xor Ai)
= S1'S0' ( Ai ) + S1'S0 ( Ai' ) +

S1 S0' ( Ai Bi' + Ai' Bi ) + S1 S0 ( Ai' Bi' + Ai Bi )
for M=1 (arithmetic operations)

Fi = S1 Bi xor ( ( S0 xor Ai ) xor Ci ) = 
Ci+1 = Ci (S0 xor Ai) + S1 Bi ( (S0 xor Ai) xor Ci ) =

just a full adder with inputs S0 xor Ai, S1 Bi, and Ci

ALU design
 Sample ALU –multi-level implementation



Multiplication

multiplicand

multiplier

1101   (13)

1011   (11)

1101

1101

0000

1101

*

10001111 (143)

Partial products

product of 2 4-bit numbers
is an 8-bit number



Sequential Multiplier

Multiplicand

Product shift-right
write

64 bits

32 bits

32-bit adder

Control 
unit



Partition Products

Partial Product Accumulation A0

B0

A0 B0

A1

B1

A1 B0

A0 B1

A2

B2

A2 B0

A1 B1

A0 B2

A3

B3

A2 B0

A2 B1

A1 B2

A0 B3

A3 B1

A2 B2

A1 B3

A3 B2

A2 B3A3 B3

S6 S5 S4 S3 S2 S1 S0S7



Reduction Example

Note use of parallel carry-outs to form higher order sums

12 Adders, if full adders, this is 6 gates each = 72 gates

16 gates form the partial products

total = 88 gates!

A 0 B 0 A 1  B 0 A 0 B 1 A 0 B 2 A 1 B 1 A 2 B 0 A 0 B 3 A 1 B 2 A 2 B 1 A 3 B 0 A 1 B 3 A 2 B 2 A 3 B 1 A 2 B 3 A 3 B 2 A 3 B 3 

HA 

S 0 S 1 

HA 

F A 

F A 

S 3 

F A 

F A 

S 4 

HA 

F A 

S 2 

F A 

F A 

S 5 

F A 

S 6 

HA 

S 7 



Example: Six partial products to be added

Original matrix of 36-bits Reorganized matrix of bits

Compressor

Final adder

Parallel multiplier



Reduction of the six partial products (Wallace)
10    9     8     7      6     5     4     3     2     1     0 10    9     8     7      6     5     4     3     2     1     0

11    10    9     8     7      6     5     4     3     2     1     0

11    10    9     8     7      6     5     4     3     2     1     0

(2,2)-counter

(3,2)-counter



Reduction of the six partial products (Dadda)
10    9     8     7      6     5     4     3     2     1     0

10    9     8     7      6     5     4     3     2     1     0

10    9     8     7      6     5     4     3     2     1     0

10    9     8     7      6     5     4     3     2     1     0
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a

y

16

8

*

y[15:0] <= a[7:0] * “00100100“
== (a[7:0] << 5) + (a[7:0] << 2)

Constant multiplication by shift-and-add

“00100100“

bit 5
bit 2

<<

8

<<

8

a

y

16

+
DW01_add

DW02_mult 13 10

MULT ==> ADD

Constant Multiplication

발표자
프레젠테이션 노트
KW:  behavioral optimization of arithmetic : multiplication, KW:  
behavioral optimization of arithmetic : constant

Instructor:
Only need to consider the ‘1’ position.
A multiplier can be replaced by a set of AND gates plus a set of adders.
If the multiplicand is a constant, (1) the AND gates disappear; (2) any row multiplied by a 0 bit in the multiplicand disappears.
If the multiplier is a constant and the multiplicand is not, BOA swaps them before decomposing the multiplication.

Answer:  5, 2
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a

y

16

8

*

y[15:0] <= a[7:0] * “00111110“
==  a * (“01000000“ - “00000010“);
==  a * “01000000” - a * “00000010“;
== (a << 6) - (a << 1);
== (a << 6) + ~(a << 1) + 1;

Canonical Encoding for constant multiplication

“00111110“

bit 6 bit 1

88

a

y

16

-
DW01_sub

DW02_mult
14 9

+ -

MULT ==> ADD

Canonical encoding transforms a constant [vector] such that it contains 
less ‘1’s than ‘0’s.

<<<<

Canonical Encoding

발표자
프레젠테이션 노트
KW:  behavioral optimization of arithmetic : canonical encoding
Instructor:
What if the constant contains a lot of 1’s? 
Without canonical encoding:
y[15:0]	==  a[7:0] * “00111110“
	==  (a<<5) + (a<<4) + (a<<3) + (a<<2) + (a<<1);
With canonical encoding:
y[15:0]	==  a[7:0] * “00111110“
	==  a * (“01000000“ - “00000010“);
	==  a * “01000000” - a * “00000010“;
	== (a << 6) - (a << 1);
	== (a << 6) + ~(a << 1) + 1;
The goal is to reduce the number of operations needed.
Canonical encoding is applied when there are at least 3 consecutive 1’s in the multiplicand.
That would require a lot of additions.  However, there’s a trick called canonical encoding which can be used to reduce the # of 1’s.  
Answer:  6, 1
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